15 research outputs found

    Deep Learning Techniques in Radar Emitter Identification

    Get PDF
    In the field of electronic warfare (EW), one of the crucial roles of electronic intelligence is the identification of radar signals. In an operational environment, it is very essential to identify radar emitters whether friend or foe so that appropriate radar countermeasures can be taken against them. With the electromagnetic environment becoming increasingly complex and the diversity of signal features, radar emitter identification with high recognition accuracy has become a significantly challenging task. Traditional radar identification methods have shown some limitations in this complex electromagnetic scenario. Several radar classification and identification methods based on artificial neural networks have emerged with the emergence of artificial neural networks, notably deep learning approaches. Machine learning and deep learning algorithms are now frequently utilized to extract various types of information from radar signals more accurately and robustly. This paper illustrates the use of Deep Neural Networks (DNN) in radar applications for emitter classification and identification. Since deep learning approaches are capable of accurately classifying complicated patterns in radar signals, they have demonstrated significant promise for identifying radar emitters. By offering a thorough literature analysis of deep learning-based methodologies, the study intends to assist researchers and practitioners in better understanding the application of deep learning techniques to challenges related to the classification and identification of radar emitters. The study demonstrates that DNN can be used successfully in applications for radar classification and identification.   &nbsp

    A review on a deep learning perspective in brain cancer classification

    Get PDF
    AWorld Health Organization (WHO) Feb 2018 report has recently shown that mortality rate due to brain or central nervous system (CNS) cancer is the highest in the Asian continent. It is of critical importance that cancer be detected earlier so that many of these lives can be saved. Cancer grading is an important aspect for targeted therapy. As cancer diagnosis is highly invasive, time consuming and expensive, there is an immediate requirement to develop a non-invasive, cost-effective and efficient tools for brain cancer characterization and grade estimation. Brain scans using magnetic resonance imaging (MRI), computed tomography (CT), as well as other imaging modalities, are fast and safer methods for tumor detection. In this paper, we tried to summarize the pathophysiology of brain cancer, imaging modalities of brain cancer and automatic computer assisted methods for brain cancer characterization in a machine and deep learning paradigm. Another objective of this paper is to find the current issues in existing engineering methods and also project a future paradigm. Further, we have highlighted the relationship between brain cancer and other brain disorders like stroke, Alzheimer’s, Parkinson’s, andWilson’s disease, leukoriaosis, and other neurological disorders in the context of machine learning and the deep learning paradigm

    Istodobno spektrofotometrijsko određivanje losartan kalija, amlodipin besilata i hidroklorotiazida u farmaceutskim pripravcima kemometrijskom metodom

    Get PDF
    In the present work, four different spectrophotometric methods for simultaneous estimation of losartan potassium, amlodipine besilate and hydrochlorothiazide in raw materials and in formulations are described. Overlapped data was quantitatively resolved by using chemometric methods, classical least squares (CLS), multiple linear regression (MLR), principal component regression (PCR) and partial least squares (PLS). Calibrations were constructed using the absorption data matrix corresponding to the concentration data matrix, with measurements in the range of 230.5350.4 nm (∆λ = 0.1 nm) in their zero order spectra. The linearity range was found to be 840, 15 and 315 μg ml1 for losartan potassium, amlodipine besilate and hydrochlorothiazide, respectively. The validity of the proposed methods was successfully assessed for analyses of drugs in the various prepared physical mixtures and in tablet formulations.U radu su opisane četiri spektrofotometrijske metode za istodobno određivanje losartan kalija, amlodipin besilata i hidroklorotiazida u sirovinama i farmaceutskim pripravcima. Podaci koji su se preklapali kvantitativno su razlučeni kemometrijskim metodama, klasičnom metodom najmanjih kvadrata (CLS), multiplom linearnom regresijom (MLR), regresijom glavnih komponenata (PCR) te metodom parcijalnih najmanjih kvadrata (PLS). Kalibracije su provedene koristeći podatke o ovisnosti apsorpcije o koncentracijama, mjereći spektre nultog reda u rasponu 230,5350,4 nm (∆λ = 0,1 nm). Linearnost za losartan kalij bila je 840, za amlodipin besilat 15, a za hidroklorotiazid 315 μg ml1. Valjanost predloženih metoda uspješno je potvrđena analizom navedenih lijekova u različitim pripremljenim smjesama i tabletama

    Skin Color Detection Model Using Neural Networks and its Performance Evaluation 1

    No full text
    Abstract: Problem statement: Skin color detection is used as a preliminary step in numerous computer vision applications like face detection, nudity recognition, hand gesture detection and person identification. In this study we present a pixel based skin color classification approach, for detecting skin pixels and non skin pixels in color images, using a novel neural network symmetric classifier. The neural classifiers used in the literature either uses a symmetric model with single neuron in the output layer or uses two separate neural networks (asymmetric model) for each of the skin and non-skin classes. The novelty of our approach is that it has two output layer neurons; one each for skin and non-skin class, instead of using two separate classifiers. Thus by using a single neural network classifier we have improved the separability between these two classes, eliminating additional time complexity that is needed in asymmetric classifier. Approach: Skin samples from web images of people from different ethnic groups were collected and used for training. Ground truth skin segmented images were obtained by using semiautomatic skin segmentation tool developed by the authors. The ground truth database of skin segmented images, thus obtained was used to evaluate the performance of our NN based classifier. Results: With proper selection of optimum classification threshold that varies from image to image the classifier gave the detection rate of more than 90 % with 7 % false positives on an average

    real

    No full text
    Survey on multiobjective evolutionary an
    corecore